What are Key Elements of Mathematics Teaching, and How do we make Progress to Enhancing their Quality?

Professor Jill Adler
SARChI Chair of Mathematics Education
University of the Witwatersrand

Presentation: Department of Basic Education
12 December 2016
Mathematics Teaching Framework

4 key elements

Lesson Goal (object of learning)
What do we want learners to know and be able to do by the end of the lesson?

Exemplification
Examples, tasks and representations
- What examples are used?
- What are the associated tasks?
- What representations are used?

Learner participation
Doing maths and talking maths
- What do learners say?
- What do learners write?

Explanatory communication
Word use and justifications
- What is said?
- What is written?
- How is it justified?

Coherence and connections
Are there coherent connections
- between the lesson goal, examples, tasks, explanations and learner participation?
- from one part of the lesson to the next?

Will learners know and be able to do what you intended? How will you know?
Introductory comments

Problem-solving

– Problem-based mathematics curriculum
 • An approach to mathematics

– Learners as (mathematics) problem-solvers
 • Independent thinkers
 • Mathematical thinkers (thinking and communicating mathematically)
Some problems

1. How many different ways can you write 36 as a product of 2 numbers? Try other numbers? Any patterns?

2. How many squares on a chess board (8x8 squares)? Explain your answer. “64 is not the answer, nor 65”

3. Is $2n > n + 2$?; is $n^2 > 2n$?
More problems

If 4 is the answer, what is the question?

If 4 is the answer, give me four different questions, each using a different operation (+ − × ÷)

If 4a is the answer

If 4a + b is the answer
Expand: \(x(x + 2) \)
Remove brackets: \(x(x + 2) \)
Multiply: \(x(x + 2) \)
Express as powers of \(x \): \(x(x + 2) \)

Expand: \(x(x + 2) \)
\(-x(x + 2)\)
\(x(x - 2)\)
\(-x(x - 2)\)

\((x + 2)x \)
\((x+2)+x\)
\((x+2)-x\)

\((x + 2)3 \)
\((x+2)+3\)
\((x+2)-3\)
Does visual impact matter when using symbols, such as when learning about algebraic relationships? Consider this collection of equations:

\[(x - 2)(x + 1) = x^2 - x - 2\]
\[(x - 3)(x + 1) = x^2 - 2x - 3\]
\[(x - 4)(x + 1) = x^2 - 3x - 4\]

\[(x - 5)(x + 1) = \]
\[(x - 10)(x + 1) = \]
\[(x - 2y)(x + y) = \]

What do you notice about the numbers in the factors and then the numbers in the product?
This draws attention to the coefficients ... and expectations of what comes next ... inspiring confidence
Seeing structure and generalising is possible
Problem solvers

• Learners who think mathematically and independently

• What teaching strategies, and professional knowledge, enable this?
Mathematics Teaching Framework

Lesson Goal (object of learning)
What do we want learners to know and be able to do by the end of the lesson?

Exemplification
Examples, tasks and representations
- What examples are used?
- What are the associated tasks?
- What representations are used?

Learner participation
Doing maths and talking maths
- What do learners say?
- What do learners write?

Explanatory communication
Word use and justifications
- What is said?
- What is written?
- How is it justified?

Coherence and connections
Are there coherent connections
- between the lesson goal, examples, tasks, explanations and learner participation?
- from one part of the lesson to the next?

4 key elements

Will learners know and be able to do what you intended? How will you know?
Improving the teaching and learning of mathematics in secondary schools in one province in SA, through linked research and professional development of mathematics teachers

Mathematical discourse in instruction - MDI

A sociocultural framework for studying and working on mathematics teaching

Improving teachers MfT
Improving teaching
Impacting learning
Learner gains

Mathematics for teaching course
Lesson study

Phase 1: 2010 – 2014
Promising results
Phase 2: 2015 – 2019
Expanding reach
Consolidating “results”
The framework

Mathematical discourse in instruction (MDI):
A socio-cultural framework for **describing** and **studying/working on** mathematics teaching

Object of learning

- **Exemplification**
 - Examples
 - Tasks
- **Explanatory Talk**
 - Naming
 - Legitimations
- **Learner Participation**

Mediation towards scientific concepts
Mathematics as network of connected concepts
Building generality and appreciating structure
How did we develop this?
Why this framework?
MDI for working on teaching

Lesson goal: What do we want learners to know and be able to do?

<table>
<thead>
<tr>
<th>Exemplification</th>
<th>Learner Participation</th>
<th>Explanatory communication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examples, tasks and representations</td>
<td>Doing maths and talking maths</td>
<td>Word use and justifications</td>
</tr>
<tr>
<td>Building generality</td>
<td></td>
<td>Informal – formal</td>
</tr>
<tr>
<td>Structure</td>
<td></td>
<td>Mathematical substantiations</td>
</tr>
<tr>
<td>Variation amidst invariance</td>
<td></td>
<td>Principles</td>
</tr>
</tbody>
</table>

Coherence and connections: Are there coherent connections between

- the lesson goal, examples, tasks, explanations and learner participation?
- from one part of the lesson to the next
Starting point on mathematics teaching

- Teaching has purpose – there is something to be learned ... **object of learning** (concept, procedure or algorithm, meta-mathematical/practice)

- bringing that into focus is central to the work of teaching – mediational means

- **Mathematics**
 - concerned with structure and generality
 - its power lies in abstraction
 - a network of concepts, connected, systematically organised ... with generality and so enabling independent (re)production
Object of learning

Focuses attention both on the content and on what learners are expected to be able to do with respect to that content (capability/competence)

- Concept, procedure, practice (proof)
 e.g. linear equations – grade 8 (topic)
 2D geometric shapes

What might be an “object of learning” in a lesson?
A lesson from a Lesson Study cycle

A problem our teachers identified

Simplify the following expressions

a) $2p - (4 + p) =$

b) $2p (-4 + p) =$

c) $(2 + p) - (4 + p) =$

Learners mis-apply rules

Learners over-generalise

(‘met-before and met-after’)

Overgeneralise statement

‘brackets means multiply’

Overgeneralise distributive law
Joint plan First Lesson

Lesson goal: Learners can simplify expressions with brackets when these are in different positions.

Calculate (simplify)
a) $4 + 3 (4 + 5) =$
b) $(4 + 3)4 + 5 =$
c) $(4 + 3)(4 + 5) =$

What is the same and what is different in each of a, b and c?
And 1, 2, 3 & 4
(Same numbers/terms, brackets in different positions)

Activity 3: Simplify

1. $(x-3x)+5=$
2. $(x-3)x+5=$
3. $x(-3x+5)=$
4. $x-(3x+5)=$

Compare and discuss answers

How does that change your calculations/simplifications?
Lesson goal: Learners can simplify expressions with brackets when these are in different positions.

Activity 3: Simplify

1. \((x-3x)+5=\)
2. \((x-3)x+5=\)
3. \(x(-3x+5)=\)
4. \(x-(3x+5)=\)

Lesson 2

Activity 3: Insert bracket(s) in the expressions on the left side so that the two sides are equal

1. \(x - 3x + 5 = -3x^2 + 5x\)
2. \(x - 3x + 5 = -2x - 5\)
3. \(x - 3x + 5 = -x^2 - 3x + 5\)

A small change to the task increased the cognitive demand

This is a more difficult task

Learners unable or unwilling to even try ... “too hard” ... “don’t know what to do” ...

Wi-maths connect

UNIVERSITY OF THE WITWATERSRAND
Johannesburg
A lesson from a Lesson Study Cycle – Grade 10

Date: 04/09/2013
Topics: Functions (Hyperbola graph)
School:
Teacher:
Grade: 10
No in class: 30

Object of learning: Help learners understand the impact of “a” and “q” as well as the asymptote when drawing hyperbola graph

Examples and tasks

<table>
<thead>
<tr>
<th>Selection, sequence, representations</th>
<th>What or how? Is there “why”?</th>
<th>What learners doing? difficulties?</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Homework: Plot the ff functions</td>
<td>Compare your homework graphs with your partner</td>
<td>Check homework</td>
</tr>
<tr>
<td>1. (y = \frac{2}{x})</td>
<td>Match the functions/equations with a correct graph. Work in your pairs</td>
<td>Card matching and discussing in pairs</td>
</tr>
<tr>
<td>2. (y = \frac{-2}{x})</td>
<td>Write the equation of the graph that doesn’t have matching equation card</td>
<td>Difficulty to identify that equations 5 & 6 have same graph</td>
</tr>
<tr>
<td>B. Deal with homework by doing card matching using six functions & six graphs (add in to 1–4 from homework)</td>
<td>Compare the graph of (y = \frac{2}{x}) with others in a sequence of: g1 & g3; g1 & g4; g1 & g2 by asking learners what changes and what stays the same? How does the graph look when ‘the numerator of x’ is positive? negative?</td>
<td>Compare graphs and identify what changes & what stays the same</td>
</tr>
<tr>
<td>5. (y = \frac{-2}{x} + 3)</td>
<td>how does the constant “a” affect the graph?</td>
<td>Sketch functions 7–9</td>
</tr>
<tr>
<td>6. (y = 3 - \frac{2}{x})</td>
<td>what happens to the graph if we introduce “q”?</td>
<td>* Learners might not recognise that 9 is a linear function</td>
</tr>
<tr>
<td>C. Compare graphs from the homework</td>
<td>how does value of q affect graph?</td>
<td></td>
</tr>
<tr>
<td>D. Sketch the ff functions</td>
<td>In conclusion, what is an asymptote?</td>
<td></td>
</tr>
<tr>
<td>7. (y = \frac{4}{x} + 5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. (y = 2 - \frac{4}{x})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. (y = \frac{x}{2} + 3)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 8.1 Ms H’s lesson plan
Example set builds towards generality; highlights structure of equations, different tasks and representations.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$y = \frac{2}{x}$</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>$y = \frac{-2}{x}$</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>$y = \frac{2}{x} - 3$</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>$y = \frac{-2}{x} + 3$</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>$y = 3 - \frac{2}{x}$</td>
<td></td>
</tr>
</tbody>
</table>

Learner participation

- Draw graphs 1 - 4
- Card matching (1 – 6)
- Comparing $1 + 3; 1 + 2; 1 + 4$
- Sketching 7 - 9

Explanatory communication

Word use
- Orientation of graph
- Domain, range
- Vertical shift
- Symmetry

Justifications
- Why equation 5 and 6 are ‘the same’
- Why equation 9 is ‘linear’
Making progress in enhancing quality of teaching/learning

- Clearer object of learning
- Richer set of examples, with tasks of varying skills and cognitive demand
- Attention to building mathematical communication
Mathematics Teaching Framework

Lesson Goal (object of learning)
What do we want learners to know and be able to do by the end of the lesson?

Exemplification
Examples, tasks and representations
- What examples are used?
- What are the associated tasks?
- What representations are used?

Learner participation
Doing maths and talking maths
- What do learners say?
- What do learners write?

Explanatory communication
Word use and justifications
- What is said?
- What is written?
- How is it justified?

Coherence and connections
Are there coherent connections
- between the lesson goal, examples, tasks, explanations and learner participation?
- from one part of the lesson to the next?

Will learners know and be able to do what you intended? How will you know?
Thank you