

RESEARCHING AND DOING PROFESSIONAL DEVELOPMENT USING A SHARED DISCURSIVE RESOURCE - A WMCS STORY

Professor Jill Adler Chair of Mathematics Education School of Education University of the Witwatersrand

Visiting Professor: King's College London

MERGA conference, keynote, 28 June 2015

The lead 'actor'

Mathematical discourse in instruction (MDI): A socio-cultural framework for describing and studying/working on mathematics teaching

Overview

- The South African mathematics education context and teachers' work
- Learning from schools initial research
- The overall framing of the WMCS project and emerging 'shared' discursive resource
- The project
 - Using the resource in and for PD
 - Operationalising this for research
- Some results and reflections

The context of WMCS

Wits Maths Connect Secondary (WMCS) 2010 – 2014 (5 years – phase 1)

Research and Development Chairs in Mathematics Education – 2009 – FRBank & DeptST, NRF)

- To improve the quality of mathematics teaching at previously disadvantaged secondary schools
- To improve the mathematics results (pass rates and quality of passes) as a result of quality to
- To research solutions t in the n
 - in the margins?
- To develop mathematics educed
- To provide leadership and increase dialogue around solutions

BRIDGING PRACTICES

Skovsmose – 2008 90% of the research in mathematics education is in service of 10% of the world's children – typically in resourced environments

The South African education context - 2009

- □ High levels of poverty and enduring, deepening inequality
- The relationship between poverty and educational outcomes well known
- □ The OECD report (2013) argues that:

Inequality in school performance in South Africa has been largely driven by the socioeconomic differences in parental background. Social Economic Status (SES) of parents is correlated with child test scores in all PISA countries, but the relationship appears to be stronger in

South Africa. in PISA test s than pupil) s

Achievement gap International phenomenon (within and across countries) 13% of the variance ndex of school (rather ered (p. 70).

Access for all - learning for some

- Socio-economic status is the strongest predictor of educational success in school (e.g. <u>Coleman et al., 1966; Hoadley, 2010</u>).
- Recent studies ... argued that 'achievement in countries with very low per capita incomes is more sensitive to the availability of school resources' (e.g. Gamoran & Long, 2006, p. 1).
- Social justice imperatives thus demand that we investigate what happens in schools and how practices might be changed in order to mediate greater education success of poor learners.

Dual economy of schooling in South Africa and teachers' work (Shalem & Hoadley, 2009)

Teachers' work depends on (assets):

learners they teach

- academically prepared
- physically healthy
- homes a second site of acquisition

🔵 curriculum

well-specified

resources in school

- Material
 Acadomic
- Academic

functional management in the school

Mediates bureaucratic demands

Dual economy of schooling in South Africa and teachers' work

Three groups of teachers

Teachers with access to all four in the top 20% schools

high achieving – predominantly middle class, urban, racially mixed
Dual economy –

schools for the 'rich' and schools for the 'poor'

- Teacher with access to none bottom 20%
 - Predominantly in poverty areas, rural, informal settlements, often dysfunctional

WMCS schools

 Teachers with access to some – the 60% in the middle
 Distributed across urban/rural; cities, townships, often underperforming, unstable

10

TISY31IND

Working with schools and teachers

- Understanding that teachers were in the middle schools, unstable, with differing levels of low morale and poor "assets" and support in terms of conditions of work
- Shalem & Hoadley ... combination of demands make teachers' work in schools for the poor "impossible"
- The professional development work with them must interact with this context

Increasing prescription, national testing, compliance

The Project – what have we done?

Wits Maths Connect Secondary (WMCS) 2010 – 2014

Grade 10 proof RTP: PQIDE PQ=ZDE Given. KDEQC CP = PD RAUPE Prove (Q=QE

0HANNESBUR

The 10 project schools

5 no fee schools (township - large) and 5 low fee schools ('suburban' - smaller)

Shifting demography in post Apartheid South Africa

□ All in the 'middle band' (National exams)

- Unstable (with six 'underperforming' in 2010, 'priority' schools)
- Mathematics (pass rates and averages low)
- Learners predominantly from townships

Teachers (most qualified) diverse training and education backgrounds

"Low" FEE PAYING SCHOOLS

Learning from/in the schools

Diagnostic testing in schools – algebra

- 'Foundations' unstable, even in later grades, absence of skill and meaning
- Observation' in schools/classrooms
 - object' out of focus mathematics narrative incoherent
 - Dominant culture of 'no learning without teaching'
 - Practices where learning only counts in the later grades
 - Underprepared teachers in some schools in early grades (8 and 9);
- Interactions with teachers over time
 - Discourses of "they can't"

Social, political, epistemological and psychological

19 PD in context

BCME8 April 2014

Our starting point on teaching

- 20
- Teaching has purpose there is something to be learned ... object of learning (concept, procedure or algorithm, metamathematical/practice)
- bringing that into focus is central to the work of teaching
- we privilege the development of scientific concepts network, connected, systematically organised ... generality and so enabling independent (re)production ...

Socio-cultural framing: Mathematical discourse in instruction (MDI)

Implicated in, but only a part of a set of practices and conditions that produce poor performance across our schools

Significance of talk in mathematics pedagogy

It matters deeply, how mathematical discourse in instruction supports (or not) mathematical learning

Our intervention – the goal

- We set out to strengthen teachers' relationship to mathematics, and through this shape their 'discourse', firstly in and for themselves, and then in their practice (PD)
 - Grade 9 10 critical transition point
- And then to be able describe whether and how this shifts over time, in what ways, and how this is related to what is made available to learn, and to learning gains (RESEARCH)

PD MODEL

Two '20 day courses'

- Critical transitions
 - Transition Maths 1: Gr 9 10
 - Transition Maths 2: Gr 11/12
 - tertiary education)
- Focused on mathematics knowledge for teaching – (SMK/pck) – MDI – 75%)
- Working on practice maths teaching framework

Reversioned learning/ lesson study

In school learning/lesson study with a structuring discursive tool (MTF)

- Studying teaching together (plan, teach lessons ...)
- Using a discursive resource
 - Maths Teaching Framework (MTF MDI)
- Teachers teaching their own learners
- Other teachers observing
- 3-week block; 3 blocks in 2014; 'curriculum'
- Clusters of schools

Boundary encounter

Our discursive resource – Maths Teaching Framework

Object of learning : teaching x to y						
Examples and tasks	Explanation / talk	Learner participation				
 What examples are used? To start off the lesson To develop the lesson (these may be "examples of") To introduce a concept To ask questions To explain further For learners to practise/ consolidate (these are "examples for") 	 What kinds of explanations are offered? What (and why) How (and why) 	What work do learners do? e.g. listening, answering questions, copying from the board, solving a problem, discussing their thinking with others, explaining their thinking to the class				
 What are the associated tasks? What are learners required to do with the example/s? 	 What representations are used? 					
How do these combine to build key concepts and skills?	How do these help to build the key concepts and skills?	How does their activity help to build key concepts and skills?				
Coherence: Are there coherent connections between the object of learning, examples, tasks and explanations?						

Maths Teaching Framework – Focusing on explanations

	Object of learning					
		Explanation				
	thematics beyond the current lesson?					
ת	What is written?	What is said?	How is the maths justified?	٣		
âm	What does the teacher write (publicly) regarding the mathematical object?	How does the teacher talk about the mathematical object?	How does the teacher justify the mathematics?	earn		
<u>ē</u> [Colloquial language	Non-mathematical cues	ē		
ខ្ល	Words, phrases, sentences	Everyday language	Visual cues, mnemonics	0		
0		e.g. "taking x to the other side"	e.g. smiley parabola	គ្ន		
2	Terminology and expressions	Ambiguous referents for objects	Metaphor related to features of real objects	i i		
tas	Graphs, illustrations, figures	e.g. this, that, thing	e.g. This is how it "looks", "sounds" , "how you remember"	ľτγ		
<u>ਨ</u>	Definitions					
		Some mathematical language	Local mathematical			
	Procedures	to name object, component	Specific/single cases			
		e.g. factor, parabola, derivative	e.g. triangles in standard position,			
	Solutions	Reading a string of symbols	expressions with only positive terms			
	Proofs	e.g. "x into x plus 2",	Established short-cuts and conventions			
	FIDUIS		e.g. FOIL, SOHCAHTOA			
		Fortunated and an analysis and the second second	Concertence			
		Extended and appropriate mathematical	General mathematical			
		language to name mathematical objects and	equivalent representations, definitions,			
		procedures	properties, principles, structures, previously			
		e.g. the product of two binomials",	established generalizations			
		"subtracting the additive inverse"				
			Note: A general mathematical justification			
			coulo de partial/incomplete/full.			

Deepening teachers' mathematical knowledge of functions

- domain, range, discontinuities, asymptotes

Key tasks The product of 2 numbers is 12 The sum of 2 numbers is 12

Preparing to teach the lab class: Gr 10 functions

- Selections of examples / tasks
- Anticipating learners' responses
- Planning follow up prompts,
 examples, explanations

Our maths teaching framework

Object of learning - teaching x to y

xamples and representations	bles and representations Explanations and questions	
What examples and representations are used?	What kinds of explanations (and related questions) are used?	What work do learners do?
 At the start of the lesson In the development of the lesson For introducing a concept For questioning For further explanation 	 What? How? Why? When? 	e.g. listening, answering questions, copying from the board, solving a problem, discussing their thinking with others, explaining their thinking to the class How do these help to build the key concepts
	How do these help to build the key	skills?

We teach lab class on campus, teachers observe

The product of 2 numbers is 12. If X·1/= 12

4

5

514

6

Reflecting on the lab lesson

- Examples & representations
- Explanations & questions
- Learner activity

OF THE '

HANNESBUR

From PD and so working on mathematics and teaching (and discursive resource)

to

Researching teaching (and so analytic device)

Our framing

Mathematical discourse in instruction (MDI): A socio-cultural framework for describing and studying/working on mathematics teaching

MDI roots

Research

- Previous work on language and then on the constitution of mathematics (enacted) in mathematics teacher education
- Analytic unit evaluative event (Davis, 2005; Adler & Davis, 2006; 2011) the centrality of signifiers, how these are 'filled out' i.e. named, and what comes to be legitimated as mathematics.

Practice

the educational 'ground' met in 2009 – 2010 in secondary mathematics classrooms in SA – social practices

Teaching/learning in time and over time

- Unit of analysis mathematical event
- Analysis of the elements in each event and as these accumulate across events over time (temporal unfolding of the lesson)

Adler, J. and Venkat, H. (2014); Teachers' mathematical discourse in instruction (MDI): Focus on examples and explanations. (Book chapter)

Adler, J. & Ronda, E. (2014) An analytic framework for describing teachers' mathematics discourse in instruction (MDI). (PME 2014)

Adler & Ronda (forthcoming) Framework for MDI and describing shifts in practice

Data production

33

				ogn meru	CHON
Events	Exs	Tasks	between theoretical and		
1 – Meaning of a Term	S, C, U	К	empirical fields		
2 – Meaning of common factor	NA	K	M		
3 – Simplify algebraic fraction	S, C, U	A - K	NM, Ms	NM, L	Y/N
4 -Divide algebraic fractions (+)	S, U	A - K	NM, Ms	NM, L, G	Y/N
5 – Extension to (-) coefficients	S, U	A - K	Nm, Ms	L	Y/N
Cumulative Code	L3	L2-L1	L2	L2	L1

Teacher A: Lesson X, Year Y

Codes – language of

description – derived

through interaction

	Object of learning					
Exem	plification	Explanatory talk		Learner		
Examples	Tasks	Naming	Legitimating criteria	Participation		
Examples	Across the lesson,	Within and	Legitimating criteria:	Learners answer:		
provide	learners are required	across events	Non mathematical	yes/no questions or		
opportunities	to:	word use is:	<i>(NM)</i> Visual (V) – e.g.	offer single words		
within an event	Carry out known	Colloquial	cues are iconic or	to the teacher's		
or across events	operations and	(NM) <i>e.g.</i>	mnemonic	unfinished sentence		
in a lesson for	procedures (K) e.g.	everyday	<i>Positional</i> (P) – e.g. a	Y/N		
learners to	multiply, factorise,	language and/or	statement or assertion,	Learners answer		
experience	solve;	ambiguous	typically by the	(what/ how)		
variation in	Apply known skills,	referents such as	teacher, as if 'fact'.	questions in		
terms of	and/or decide on	this, that, thing,	Everyday (E)	phrases/ sentences		
similarity (S),	operation and /or	to refer to		(P/S)		
	procedure to use (A)	signifiers	Mathematical criteria:	Learners answer		
contrast (C),	e.g. Compare/	Math words	Local (L) e.g. a	why questions;		
	classify/ match	used as name	specific or single case	present ideas in		
simultaneity (U)	representations;	only (Ms) e.g. to	(real-life or math),	discussion; teacher		
	Use multiple concepts	read string of	established shortcut, or	revoices / confirms/		
	and make multiple	symbols	convention	asks questions (D)		
	connections. (C/PS)	Mathematical	General (G) equivalent			
	e.g. Solve problems	language used	representation,			
	in different ways; use	appropriately	definition, previously			
	multiple	(Ma) to refer to	established			
	representations; pose	signifiers and	generalization;			
	problems; prove;	procedures	principles, structures,			
	reason.etc		properties; and these			
			can be partial (GP) or			
			'full' (GF)			

Exemplification		Explanatory talk		Learner
Examples	Tasks	Naming	Legitimating criteria	Participation
Examples provide opportunities within an event or across events in a lesson for learners to experience variation in terms of <i>similarity</i> (S), <i>contrast</i> (C), <i>simultaneity</i> (U)	A le tc C Examples event or c learners to learners to a similarity (p_1 e. cl re contrast (C d	provide c cross even o experien S),	opportunities on nts in a lesson nce variation Building generalion (connection	within an for in terms o
	e. SIMUITCINEIT ir m representations; pose problems; prove; reason.etc	signifiers and procedures	generalization; principles, structures, properties; and these can be partial (GP) or 'full' (GF)	

OHANNESBURG

		Object of learning	ng	
Exen	plification	Explanatory talk		Learner
Examples	Tasks	Naming	Legitimating criteria	Participation
Examples	Across the lesson,	Within and	Legitimating criteria:	Learners answer:
provide	learners are required	across events	Non mathematical	ves/no questions or
opportunities	to:	word use is:		
within an event	Carry out known	Colloquial		
or across events	operations and	(NM) <i>e.g.</i>	Within and acros	ss events word use
in a lesson for	procedures (K) e.g.	everyday	• Colloquial (NI	
learners to	multiply, factorise,	language and/or		
experience	solve;	ambiguous	language and	l/or ambiguous
variation in	Apply known skills,	referents such as	referents such	as this that thing
terms of	and/or decide on	this, that, thing,		
simile		to refer to	to reter to sig	nitiers
		signifiers		
cont.		Math words		
Mover	nent between	used as name	 Math words us 	sed as name only
simu colloc	uial informal	only (Ms) e.g. to	(Ms) e.a. to re	ead string of
colloq	s and s and s	read string of		J
and fo	rmal word use	symbols	symbols	
		Mathematical		
		language used	• Mathematical	languago usod
	nse nse	appropriately		language used
	multiple	(Ma) to refer to	appropriately	(Ma) to refer to
	representations; pose	signifiers and	signifiers and	nrocedures
	problems; prove;	procedures	significits and	procedures
	reason.etc			
A TRACK				
,RAND			`tull´ (GF)	wits
9.445				maths
JRC .				supporting secondar

	Object of learning					
	Exemplification		Expl	anatory talk	Learner	
			3	Legitimating criteria	Participation	
Within criteric Non m Visual Position typical Everydd	n and across events legitimating a are: mathematical (NM) (V) – e.g. cues are iconic or mnemo- nal (P) – e.g. a statement or assert lly by the teacher, as if 'fact'. ay (E)	onic ion,	ts l/or ch as ing,	Legitimating criteria: Non mathematical (NM) Visual (V) – e.g. cues are iconic or mnemonic Positional (P) – e.g. a statement or assertion, typically by the teacher, as if 'fact'. Everyday (E)	Learners answer: yes/no questions or offer single words to the teacher's unfinished sentence Y/N Learners answer (what/ how) questions in phrases/ sentences (P/S)	
Mathe Local (math), General previou princip partial	Ematical criteria: L) e.g. a specific or single case (re established shortcut, or convention al (G) equivalent representation, de usly established generalization; eles, structures, properties; and the (GP) or 'full' (GF)	al-life or efinition, se can be	ne .g. to of <i>al</i> <i>red</i> <i>ly</i> or to nd	Movement betw and towards mathematica principled crite estumate generalization; principles, structures, properties; and these can be partial (GP) or 'full' (GF)	stions; deas in on; teacher / confirms/ stions (D)	

OHANNESBURG

	Object of learning					
Exem	plification	Expl	anatory talk	Learner		
Examples	Tasks	Naming	Legitimating criteria	Participation		
Level 1- S OR	Level 1 – K only	Level 1 – NM –	Level 0 – all Criteria	Level 1 – Y/N only		
С	Level 2 – K and/or	there is no	are NM i.e. V, P, E			
Level 2- S AND	some application A	focused math	Level 1 – criteria	Level 2 – at least		
C	Level 3 – K and/or A	talk – all	include L – e.g. single	some P/S in more		
Level 3- U	and C/PS	colloquial/	case.	than one event		
Level 0 -		everyday	Level 2 – criteria			
simultaneous	Level $2 - 1 - A - K$	Level 2 –	extend beyond NM and	Level $3 - P/S$ and		
variation with	or C/PS – K is	movement	L to include Generality,	at least some D in		
no attention to	assigned to tasks set	between NM	but this is partial GP	more than one		
similarity and/or	up at level 2 or 3 but	and Ms, some	Level 3 - GF math	event		
contrast with	then reduced to 1	Ma	legitimation of a			
respect to	when it unfolds.	Level 3 –	concept or procedure is			
aspects of the		Movement	principled and/or			
concept/		between	derived/proved			
procedure, and		colloquial NM				
thus limits to		and formal math				
bringing		talk Ma				
generality into						
focus,						

Object of learning						
Exem	plification	Expl	anatory talk	Learr	ner	
Examples	Empirical cod	es to 'de	scribe' shifts in	MDI	tion	
Level 1- S OR					'N only	
С	Level 1- S OR	C				
Level 2- S AND		C			least	
C					more	
Level 3- U	Level 2- 5 AIN	DC			nt	
Level 0 -						
simultaneous	Level 3- U				S and	
variation with					D in	
no attention to	Level 0 - simu	ltaneous var	riation with no at	tention	ne	
similarity and/or		. /				
contrast with	to similarity a	nd/or contro	ast with respect t	0		
respect to	aspects of the	concent/n	racedure and th	us limits		
aspects of the	uspects of the	concept/ p		105 1111115		
procedure and	to bringing ge	enerality into	o focus			
thus limits to		*				
bringing						
generality into						
focus,						

Lead actor - 'boundary object'

- artifacts based on a range of larger and more localized research findings, and designed specifically for trialing in the overlapping 'boundary' region of the communities of research and classroom practice
- 'objects that are both plastic enough to adapt to local needs and constraints of the several parties employing them, yet robust enough to maintain a common identity across sites. They are weakly structured in common use, and become strongly structured in individual site use.' (Star & Griesemer, 1989, p.393)

Why view this as a boundary object?

- Interpretation, rather than 'adoption' of tools viewed as the norm
- Need to take contextual affordances and constraints into account
- Gain insights into the range of ways in which interventions come to being in practice

SOME IMPORTANT RESULTS

More learners are obtaining A, B and C-symbols in Grade 12 Mathematics. More careful selection of learners for Mathematics has substantially reduced the numbers scoring below 30%.

Grade 12 NSC Mathematics 2013

Learning gains

Investigating learning gains in relation to teachers' participation in professional development courses

Intervention group and control group of teachers

Pre- and post-test with 800 Grade 10 learners in 5 project schools over 1 year

Learners taught by teachers who had completed a TM course made **bigger gains** than those taught by teachers who had not participated in a TM course. These learners had a **lower average pre-test score** than the control group but a **higher average post-test score**.

Teachers' learning - mathematics

Teachers' MDI - pre and post video data TM1

Improvement

- Selection and sequencing of examples
- Naming of signifiers

Less change

- Nature of the tasks
- Reasoning by principle

Back to our lead actor - MDI

- Content illumination through exemplification in general and example sets in particular is productive across pedagogies and so across varying contexts and practices.
- With explanatory talk, MDI framework allows for an attenuated description of practice, prising apart parts of a lesson that in practice are inextricably interconnected, and how each of these contribute overall to what is made available to learn.
- It provides for comprehensive, yet responsive and responsible description.

Limitations – as with any framework

- Learner participation and tasks combine?
- 'Naming' restrictive pointing to word use a function of how language is at work in multilingual classrooms. This too could be developed further (e.g. positioning).
- Our concern has been to build an analytic concepts with practical appeal, operationalized so as to improve description of practice and relevant elements towards progress.

in the margins?

Research and development

Shared discursive resource

THANK YOU!

KE A LEBOGA! NGIYABONGA!

